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Statistical analysis of the fractal gating motions of the enzyme acetylcholinesterase
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The enzyme acetylcholinesterase has an active site that is accessible only by a “gorge” or main channel
from the surface, and perhaps by secondary channels such as the “back door.” Molecular-dynamics simula-
tions show that these channels are too narrow most of the time to admit substrate or other small molecules.
Binding of substrates is therefore “gated” by structural fluctuations of the enzyme. Here, we analyze the
fluctuations of these possible channels, as observed in the 10.8-ns trajectory of the simulation. The probability
density function of the gorge proper radi(defined in the textwas calculated. A double-peak feature of the
function was discovered and therefore two states with a threshold were identified. The reléxatisition
probability) functions of these two states were also calculated. The results revealed a power-law decay trend
and an oscillation around it, which show properties of fractal dynamics with a “complex exponent.” The cross
correlation of potential energy versus proper radius was also investigated. We discuss possible physical models
behind the fractal protein dynamics; the dynamic hierarchical model for glassy systems is evaluated in detail.
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[. INTRODUCTION Some earlier work has been conducted to investigate the gat-
ing motion [7]. Based on a large data set from a new
The ideas of fractal geometifyl] have been applied to molecular-dynamic§MD) simulation of mouse acetylcho-
many branches of science, especially those involving comlinesterasgmAChE), we analyze this important gating mo-
plex systems. It is widely believed that peculiar power-lawtion of protein with the language of fractals.
behaviors emerge from a complex system when there is a
lack of characteristic scalscale-invariance i.e., the physi-
cal observable is of the forf(bx) =b“f(x). The solution is
assumed to be a power law with a real exponertiut some We collected more than 10000 snapshots from the MD
situations can result in a power law with complex exponentsimulation of mAChE at 1-ps intervals. This 10.8-ns trajec-
[2-4], giving f(x) ~Re*"¥)~x* cos(pIn x). Or the general tory is unusually long for a full atomistic, explicitly cubic-
solution is expressed af(x)=ReE,Ax*"™). In other box solvated MD simulation with a protein of this size
words, the signature of a complex exponent is the logarithimAChE has 543 residugsThe simulation was performed
mic oscillation around the real exponent power-law trend.on 32 processors of a Cray T3E parallel supercomputer at the
The situation in which a system shows such behavior can b8an Diego Supercomputer Center over a period of three
described by the renormalization-groyRG) analogs, in  years, consuming a total of over seven months of supercom-
which case the exponents are eigenvalues of a RG transfoputer time. Since this trajectory is an extension of that re-
mation matrix around a fixed point. For most cases, the maported in[8], the MD setup was the same. The time step of
trix is assumed to be diagonalizable with real eigenvalueshe MD simulation was 2 fs.
but in general, we could have complex eigenvalues. It turns In order to characterize the degree of the gorge opening
out that certain RG calculations in disorder@glassy sys-  with a single variable, we defined the proper radius for the
tems have found complex eigenvalygs. conformation of each snapshot as the maximum radius of a
Due to the complex nature of biological systems, there arspherical ligand that can go through the gorge from outside
a variety of phenomena in molecular biophydigsthat can  the protein to reach the bottom. Equivalently, it is the maxi-
be characterized by fractal methods, from biopolymer strucmum probe radius with which we can still generate a solvent
tures to diffusion and chemical kinetics. In this paper, we useccessible surface with a continuous topology; that is, if the
these ideas to analyze the dynamics of the functionally improbe radius is too large, the surface of the bottleneck region
portant motiongFIM’s) [5] of the enzyme acetylcholinest- will break, the surface near the bottom part of gorge will no
erase(AChE) [6]. AChE is an important serine esterase thatlonger connect to that on the exterior of the protein, and we
catalyzes hydrolysis of the cationic neurotransmitter acetylwill have a discontinuous topology. Figure 1 compares the
choline (ACh"), thus terminating the synaptic transmissionopen and closed conformations thus defined. In our algo-
cycle. In order to be hydrolyzed, AChhas to reach the rithm, we first generate the Shrake and Rupley surface with a
active site of AChE, which lies at the bottom of a narrow andtesting probe radiu8]; then we try to determine whether the
deep gorge. Since the gorge has a very narrow bottleneckurface generated by the atom, @ residue Ser203the
region for a ligand of the size of AChto pass through, the bottom of the gorgeis topologically continuous with the
gorge width fluctuation is a crucial FIM for this catalysis. surface of the bottleneck regidnepresented by the atoms

II. DATA COLLECTION
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FIG. 1. Comparison of surface for continuous and discontinuous 08 ¢ i
topology. (a) shows a conformation with an open gorge, whl
shows a closed gorge, but with the “back door” op&€8er203 is
shown in the center of each figure.
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Leu76 G, Trp286G;, and Tyr72 Q) for that probe radius. proper radius (A)

Using a binary search algorithm to decide what will be the £ 3 propability density function of the gorge proper radius
next probe radius, we can determine the proper radius witfp 7 ns to 10.8 ns

desired precision. We started with a test value of 1.6 A, an
assumed the value of the proper radius was bounded betweggor” opening events. Similarly, we blocked the “back

rithm, we achieved a final discretization of 0.05 A; in other Among the 10000 snapshots, only 78 had “back door”

words, we narrowed down the proper radius to some valugpening events; for the rest of the time it was closed.
within +0.025 A. We calculated a proper radius for each
snapshot. The results of these calculations are shown as a
time series of the gorge proper radius in Fig. 2.

In addition to the gorge, results from this and previfis First we should choose a starting point for our equilibrium
MD simulations of MAChE also showed an alternative openstatistics instead of using all the data points from the MD
ing occasionally large enough for at least water molecules t@rajectory. The MD simulation starts from the crystal struc-
pass. This opening, named the “back dod#®], is conjec-  ture of AChE, a conformation with the gorge closed and high
tured to assist in releasing the catalyzed products. The opepotential energy due to crystal packing effects. During the
ing motion of the “back door” is formed by a shutterlike MD simulation, the solvated protein gradually relaxes; this
motion of Trp86, Gly448, Tyr449, and lle451. Instead of equilibration process normally takes less than 1 ns. Here we
using multiple probe radii to calculate the proper radius, as irthoose the cutoff relaxation time to be 700 ps, which will be
the case of the gorge, we used a single probe radius of 1.4 j&stified later.
to test whether the “back door” is open or closed. We al- The probability density functiotPDF) of the proper ra-
ways blocked the gorge entrance, while probing for “backdius is shown in Fig. 3, with the average of the radii being

1.52 A and standard deviation 0.261 A. We found that the

25 ' ‘ distribution has two peaks, one centered around 1.15 A and
the other around 1.60 A. Also shown in the same figure is the
smoothed result of the raw discrete data.

By setting a threshold radius*=1.27 A at the local
minimum between the two peaks in Fig. 3, we can define two
states, which we call the closed and the open states. The
physical meaning of the two states is whether, for that con-
formation, the gorge of AChE allows a spherical ligand of
radius 1.27 A to enter. We then define a dichotomous signal
using the following coarse grain transformation function:

Ill. ANALYSES AND RESULTS

proper radius (A)

0 (closed state r<r*;
1 (open statg r>r*.

I(r)= (1)

We can then calculate the dwell times of each state from the
dichotomous signal.

The average radii of the closed and open stategrre
=1.133 A and({ro)=1.621 A. The mean values of the
FIG. 2. Time series of the gorge proper radius. closed- and open-state dwell times &fe-)=2.86 ps and
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FIG. 5. Time autocorrelation function of the proper radius time

FIG. 4. Log-log plot of the tail of the cumulative probability Series. The error bar is a rough estimation based on the assumption
distribution versus dwell time, showing the power-log behaviorthat each of the 500 ps blocks of data is independent. The presence
over three orders of magnitude. Note for “back door,” since we did ©f nonexponential decay makes the estimation of the error bar dif-
not have enough data for statistics of the open dwell time, only thdicult.
closed “back door” data are shown.

called “1/f” noise [10]. It starts to level off as white noise at
(To)=11.55ps. The ratio of the sum of all the dwell times about 16*Hz, due to the limit of our sampling frequency.
for the closed state over that for the open state is 1:4. Maxi- Figure 7 shows the calculation of the dynamic scaling
mum open and closed dwell times for the gorge are 806 an@xponents, defined by
56 ps, respectively.

The dwell times are significant: they can be seen as how _
long the protein stays in a state before passing on to other D(t)z\/<[y(t+to)—Y(to)]2>—<Y(t+to)—Y(to)>2“th(3)
states. The statistics of these dwell times give the relaxation
(transition probability function, which is an important func-

tion for dynamics. wherey(t)=3='<'r(i). If z=1%, it could be a trivial case of a
The definition of the tail of the cumulative probability Brownian motion. Otherwisez> 3 gives a fractional persis-
distribution for a PDFf(t) is tent random walk, and<3 antipersistenf11]. In this cal-

culation,z is about 0.89, which is much more persistent than

" white noise. Dynamic exponents for the random walk are
P(t)= f f(t))dt'=1—F(t), (20  also used to track other systems such as DNA-encoded walk;
t

10”

whereF(t) is the cumulative probability distribution func-
tion as usually defined. Figure 4 is the log-log plot of the tail
of the cumulative probability distribution versus dwell time. 10* |
The data fall very nicely around a straight line over several
orders of magnitude in the time axis; this suggests power-lawn
functionsP(t)~t~# and f(t)~t~ (#*1), 10° |
In addition to the relaxation function, other common _
methods for the investigation of nonexponential dynamics®
include the time correlation function, the power spectrum, 1o* |
and the dynamic scaling exponent for fractional random
walk. Figure 5 is the time autocorrelation function of the
proper radius time series, showing an interesting nonexpo- 15° |
nential decay behavior, which initiated our quest for the dy-
namic nature of the fluctuation. Figure 6 is the log-log plot of
the power spectrum of the proper radius time series; equiva 1+ L
lently, this is the norm of the Fourier transform of the time 10 10
seriesr(t), S(f)=|8(f)|2~fA. Again, it shows a general
power-law decay trend. It appears to be a scaling noise, also  FIG. 6. Power spectrum of the proper radius time series.
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1000 ‘ ‘ - proper radiugdata not shown This resulted in a very rough
energy landscape, making it difficult to describe conclu-
sively.

100 |
IV. DISCUSSION

* Since fractals appear in many different complex systems,
o | many theoretical models have been developed to explain
7 them. Some are used to explain the dynamic fractals in bio-
T physics, for example the amorphous two-level sys{éhS),
the time-dependent kinetics model, and the defect-diffusion
1 * ] model. For a brief review of models describing the fractal
dynamics of protein, see Chaps. 6 and TZf Though many
of them give the final power-law function, some are easier to
understand physically.
1 10 100 1000 10000 The hierarchical moddl13], as a possible description of
time (ps) protein dynamic$14], is especially interesting in this case. It

FIG. 7. Dynamic scaling exponent shown as the slope of thavas originally proposed in the spin-glass literature to model

log-log plot of Eq. (3). The slope from the linear regression is different kinds of nonexponential dynamics problems, for

0.923+0.007; the correlation coefficient is 0.99977. example Stretc_hed exponential dynamics and power-law ‘?'y'
namics. In this model, the complex relaxation event is

) thought of as a hierarchy of simple Markov relaxations. The
this method was reportefl2] to offer better results than higrarchy of relaxations is divided into tiers. In each tier, the
autocorrelation or power spectrum methods, as is shown ifg|axations are considered to be parallel and uncorrelated.

our case. . . However, relaxations in the slower tiers can only happen
Apart from the statistics of the proper radius alone, Weyhen the faster tiers have moved into required conforma-

also studied the cross correlation between the gorge propgpns.

radius and the potential energy of ACHEig. 8. One can In the case of a polymer, the fast degrees of freedom may
egsny see that the states in the f|r§t 0.7 ns are distinctly,yolve simpler motions with only a few atoms participating,
different from those afterwards. The first and second half ofyile the slower ones involve a group of atoms, maybe a
the trajectory after 0.7 ns are statistically similar. For the firsty ,pdomain. Indeed, most of the bond rotations in a polymer
700 ps, the system starts from a high-energy state _Wlth @re constrained by simple energy barriécemparable to a
narrow gorge, angl_ SL_JbsequentIy the system evolves with '_V”%ingle spin in a strongly coupled glassy matéridlhese

to a relaxed equilibrium, namely a lower-energy state withsimple rotations have to reach a specific conformation in

more time in the open gate state. This justifies our choice ofger to lower the barrier for the next tier of events to hap-
the beginning of the equilibrium statistics. In order to seepen and so on.

whether there is an energy barrier at the threshold between \ye can express the relaxation function as
the two peaks, we averaged the potential energy for each

10

D@y (A)

value of the proper radius and plotted it for all values of the N
f(=2, (ci/mexp—t/7), @
—74000 i=1
T e c0-700ps with =N ;=1 as the requirement of normalization. Thus
© 701 - 5700 ps . . .
« 5701 - 10700 ps for a simple(single-componentevent, the decay is exponen-

tial. Since the PDF of the dwell times is a\yetype distri-
bution, which has a power-law decay tail, our objective is to
find a set ofc; andt; which can lead tof (t) ~A(t)/t**#,
where A(t) can be a correction from the pure power-law
behavior. Much effort has been spent in modeling this, e.g.,
in [15-17]. From both maximum-likelihood fitting of experi-
mental datd 18] and theoretical work, a likely solution for
the equation above is the Weierstrass spectrum in geometric
progressiorf13,16,19, which defines two ratios:

-75000

-76000

potential energy (kJ/mol)

Ci+1/Ci:a and Ti+l/7-i:)\v (5)

-77000 - .
0.5 1 15 2 25

us (A
properadiue () wherea e (0,1) and\>1.

FIG. 8. Proper radius vs potential energy plot. Each dot repre- With the help of the Poisson summation form{24)], the

sents a snapshot. The dashed line shows the transition from og®lution of Egs.(4) and (5) can be rewrittensee the RG

snapshot to the next. approach i19)) asf(t)=By(t)/t**#, with
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= [19] that the integration of the above equation nicely pre-
I+ 1.6 +2 2 In(7m. 9l serves the type of function only with different parameters
m=1 (u+1—u,B;— Bi). Here we use data from the gorge open

case as an example to evaluate parameteasd \ for this

x cog argl n( 7, &) + B IN g]} , (6) model. Based on the discqssion above and Fig. 4, we can see
that for an order of magnitude of change, about five-halves

of oscillations occur, therefore the paramefr=2x/In\

~ml(}), so Inn~2 and A\~1.5. Since the slopeu=

—In a/In\~0.85, we estimater~ 0.7 for this case.

crt

Bn(D= 1%

wherec=(1—a)/(1—a"), r=7,, u=—InalinX\, é=t/7,
Bm=(2mm)/In\, andn,,=1+ x—iB,. Here the integral is
defined as

£
INC(7m é)Ef y'm~le7Ydy. 7 V. CONCLUDING REMARKS

EN-N+1 . . .
We reported striking fractal dynamics of a protein mol-

In the case ofN—w, this approaches the complex-valued ecule from a MD simulation. Several statistical analysis tools
incompletel” function, y(7,,£), and for longer tim¢> 7, it~ were applied to demonstrate this behavior, and a mathemati-
asymptotically approaches the compl€&téunction I'(7,,). cal model was highlighted in an attempt to describe the sys-
One of the merits of this model compared with others istem. We want to point out that some of the statistical meth-
that it gives not only the dominant power-law trend, but also0ds and theoretical models are inspired by and borrowed
higher-order oscillations around the trend. As mentioned pefrom the well-studied fractal ion-channel kinetics. This is an
fore, this oscillation corresponds to the complex exponent, ogxample of fractal application, which often connects two sys-
the complex fractal dimension. It has been obsefi&j21] tems seemingly without similarity. Here, a similar kind of
in systems with abundant experimental data as well as in ounolecular level gating motion might be a candidate for the
simulation results. A few examples in biophysics include theunderlying phenomena in the ion-channel case, which was
human bronchial tref22], ion channel kinetic§18,23, and ~ also suggested by recent experimental re4@4g.
the tritium exchange in rhodopsin and lysozyfgaé]. Earlier
phenomenological models successfully fit those data to the
function ¢(t)=[A,+Aq cos@y In )t [Eq. (4) of [21]] ACKNOWLEDGMENTS
From Eq.(6), we can see that besides the zeroth order with We are grateful to L. S. Canino, U."Besson, M. Philip-
power-law trend, we have a series of cosine functions ofopoulos, and T. Hwa for very helpful discussions. K. T.
decreasing magnitude with increasing order. The oscillatiomvishes to acknowledge the La Jolla Interfaces in Science
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stead. Fortunately, with simple substitution, one can provenstitute.

[1] B. B. Mandelbrot,The Fractal Geometry of Naturgreeman, [10] M. B. Weissman, Rev. Mod. Phy&0, 537 (1988.

New York, 1983. [11] L. S. Liebovitch and W. Yang, Phys. Rev.36, 4557(1997).

[2] T. G. Dewey,Fractals in Molecular Biophysic§Oxford Uni- [12] C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, M.
versity Press, New York, 1997 Simons, and H. E. Stanley, Phys. Rev4E 3730(1993.

[3] A. Weinrib and B. I. Halperin, Phys. Rev. 87, 413(1983. [13] R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson,

[4] B. Doucotet al, Phys. Rev. Lett57, 1235(1986; D. Sor- Phys. Rev. Lett53, 958 (1984; R. Zwanzig,ibid. 54, 364
nette, Phys. Re297, 239(1998. (1985; R. G. Palmer, D. L. Stein, E. Abrahams, and P. W.

[5] H. Frauenfelder, F. Parak, and R. D. Young, Annu. Rev. Bio- Anderson,ibid. 54, 365(1985.
phys. Biophys. Cheml7, 451 (1988; J. A. McCammon, in  [14] D. L. Stein, Proc. Natl. Acad. Sci. U.S.82, 3670(1985.
Simplicity and Complexity in Proteins and Nucleic Acidd- [15] S. Machlup, inSixth International Conference on Noise in
ited by H. Frauenfelder, J. Deisenhofer, and P. G. Wolynes Physical System@\BS, Washington, D.C., 1981

(Dahlem University Press, Berlin, 2000 [16] T. F. Nonnenmacher and D. J. F. Nonnenmacher, Phys. Lett. A
[6] J. L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, 140 323(1989.
L. Toker, and I. Silman, Scienc253 872 (1991). [17] L. S. Liebovitch, Math. Biosci93, 97 (1989; L. S. Liebovitch
[7] H. X. Zhou, S. T. Wlodek, and J. A. McCammon, Proc. Natl. and F. P. Czegledy, Ann. Biomed. Er2), 517 (1992.
Acad. Sci. U.S.A95, 9280(1998. [18] O. B. McManus and K. L. Magleby, J. Physi¢London 402,
[8] S. Tara, T. P. Straatsma, and J. A. McCammon, Biopolymers 79 (1988.
50, 35(1999. [19] T. F. Nonnenmacher and D. J. F. Nonnenmachegtothastic
[9] M. K. Gilson, T. P. Straatsma, J. A. McCammon, D. R. Ripoll, Processes: Physics & Geometfinternational Conferende
C. H. Faerman, P. H. Axelsen, I. Silman, and J. L. Sussman, edited by S. A. Albeverio, G. Casati, D. Merlini, G. Cattaneo,
Science263, 1276(1994). and R. MoresiWorld Scientific, Singapore, 1991

041902-5



T. Y. SHEN, KAIHSU TAI, AND J. ANDREW MCCAMMON PHYSICAL REVIEW E63 041902

[20] P. M. Morse and H. Feshbacklethods of Theoretical Physics Lett. 67, 2106(19917).
(McGraw-Hill, New York, 1953, p. 467. [23] S. Mercik, K. Weron, and Z. Siwy, Phys. Rev. @, 7343
[21] T. G. Dewey and J. G. Bann, Biophys.GB, 594 (1992. (1999.

[22] E. R. Weibel,Morphometry of the Human Lun@icademic, [24] S. M. Bezrukov and M. Winterhalter, Phys. Rev. L&®&, 202
New York, 1963; M. F. Shlesinger and B. J. West, Phys. Rev. (2000.

041902-6



