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Statistical analysis of the fractal gating motions of the enzyme acetylcholinesterase
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The enzyme acetylcholinesterase has an active site that is accessible only by a ‘‘gorge’’ or main channel
from the surface, and perhaps by secondary channels such as the ‘‘back door.’’ Molecular-dynamics simula-
tions show that these channels are too narrow most of the time to admit substrate or other small molecules.
Binding of substrates is therefore ‘‘gated’’ by structural fluctuations of the enzyme. Here, we analyze the
fluctuations of these possible channels, as observed in the 10.8-ns trajectory of the simulation. The probability
density function of the gorge proper radius~defined in the text! was calculated. A double-peak feature of the
function was discovered and therefore two states with a threshold were identified. The relaxation~transition
probability! functions of these two states were also calculated. The results revealed a power-law decay trend
and an oscillation around it, which show properties of fractal dynamics with a ‘‘complex exponent.’’ The cross
correlation of potential energy versus proper radius was also investigated. We discuss possible physical models
behind the fractal protein dynamics; the dynamic hierarchical model for glassy systems is evaluated in detail.

DOI: 10.1103/PhysRevE.63.041902 PACS number~s!: 87.15.He, 05.40.2a, 05.45.Df, 87.18.Bb
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I. INTRODUCTION

The ideas of fractal geometry@1# have been applied to
many branches of science, especially those involving co
plex systems. It is widely believed that peculiar power-la
behaviors emerge from a complex system when there
lack of characteristic scale~scale-invariance!, i.e., the physi-
cal observable is of the formf (bx)5ba f (x). The solution is
assumed to be a power law with a real exponenta, but some
situations can result in a power law with complex expone
@2–4#, giving f (x);Re(xa1if);xa cos(f ln x). Or the general
solution is expressed asf (x)5Re((mAmxa1imf). In other
words, the signature of a complex exponent is the logar
mic oscillation around the real exponent power-law tre
The situation in which a system shows such behavior can
described by the renormalization-group~RG! analogs, in
which case the exponents are eigenvalues of a RG tran
mation matrix around a fixed point. For most cases, the
trix is assumed to be diagonalizable with real eigenvalu
but in general, we could have complex eigenvalues. It tu
out that certain RG calculations in disordered~glassy! sys-
tems have found complex eigenvalues@3#.

Due to the complex nature of biological systems, there
a variety of phenomena in molecular biophysics@2# that can
be characterized by fractal methods, from biopolymer str
tures to diffusion and chemical kinetics. In this paper, we
these ideas to analyze the dynamics of the functionally
portant motions~FIM’s! @5# of the enzyme acetylcholines
erase~AChE! @6#. AChE is an important serine esterase th
catalyzes hydrolysis of the cationic neurotransmitter ace
choline (ACh1), thus terminating the synaptic transmissi
cycle. In order to be hydrolyzed, ACh1 has to reach the
active site of AChE, which lies at the bottom of a narrow a
deep gorge. Since the gorge has a very narrow bottlen
region for a ligand of the size of ACh1 to pass through, the
gorge width fluctuation is a crucial FIM for this catalysi
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Some earlier work has been conducted to investigate the
ing motion @7#. Based on a large data set from a ne
molecular-dynamics~MD! simulation of mouse acetylcho
linesterase~mAChE!, we analyze this important gating mo
tion of protein with the language of fractals.

II. DATA COLLECTION

We collected more than 10 000 snapshots from the M
simulation of mAChE at 1-ps intervals. This 10.8-ns traje
tory is unusually long for a full atomistic, explicitly cubic
box solvated MD simulation with a protein of this siz
~mAChE has 543 residues!. The simulation was performed
on 32 processors of a Cray T3E parallel supercomputer a
San Diego Supercomputer Center over a period of th
years, consuming a total of over seven months of superc
puter time. Since this trajectory is an extension of that
ported in@8#, the MD setup was the same. The time step
the MD simulation was 2 fs.

In order to characterize the degree of the gorge open
with a single variable, we defined the proper radius for
conformation of each snapshot as the maximum radius
spherical ligand that can go through the gorge from outs
the protein to reach the bottom. Equivalently, it is the ma
mum probe radius with which we can still generate a solv
accessible surface with a continuous topology; that is, if
probe radius is too large, the surface of the bottleneck reg
will break, the surface near the bottom part of gorge will
longer connect to that on the exterior of the protein, and
will have a discontinuous topology. Figure 1 compares
open and closed conformations thus defined. In our al
rithm, we first generate the Shrake and Rupley surface wi
testing probe radius@8#; then we try to determine whether th
surface generated by the atom Og in residue Ser203~the
bottom of the gorge! is topologically continuous with the
surface of the bottleneck region~represented by the atom
©2001 The American Physical Society02-1
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Leu76 Cd1 , Trp286Cb , and Tyr72 OH) for that probe radius.
Using a binary search algorithm to decide what will be t
next probe radius, we can determine the proper radius w
desired precision. We started with a test value of 1.6 Å, a
assumed the value of the proper radius was bounded betw
0.8 and 2.4 Å. With six iterations in the binary search alg
rithm, we achieved a final discretization of 0.05 Å; in oth
words, we narrowed down the proper radius to some va
within 60.025 Å. We calculated a proper radius for ea
snapshot. The results of these calculations are shown
time series of the gorge proper radius in Fig. 2.

In addition to the gorge, results from this and previous@8#
MD simulations of mAChE also showed an alternative op
ing occasionally large enough for at least water molecule
pass. This opening, named the ‘‘back door’’@9#, is conjec-
tured to assist in releasing the catalyzed products. The o
ing motion of the ‘‘back door’’ is formed by a shutterlik
motion of Trp86, Gly448, Tyr449, and Ile451. Instead
using multiple probe radii to calculate the proper radius, a
the case of the gorge, we used a single probe radius of 1
to test whether the ‘‘back door’’ is open or closed. We
ways blocked the gorge entrance, while probing for ‘‘ba

FIG. 1. Comparison of surface for continuous and discontinu
topology.~a! shows a conformation with an open gorge, while~b!
shows a closed gorge, but with the ‘‘back door’’ open.~Ser203 is
shown in the center of each figure.!

FIG. 2. Time series of the gorge proper radius.
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door’’ opening events. Similarly, we blocked the ‘‘bac
door’’ region in the gorge calculation described abov
Among the 10 000 snapshots, only 78 had ‘‘back doo
opening events; for the rest of the time it was closed.

III. ANALYSES AND RESULTS

First we should choose a starting point for our equilibriu
statistics instead of using all the data points from the M
trajectory. The MD simulation starts from the crystal stru
ture of AChE, a conformation with the gorge closed and h
potential energy due to crystal packing effects. During
MD simulation, the solvated protein gradually relaxes; th
equilibration process normally takes less than 1 ns. Here
choose the cutoff relaxation time to be 700 ps, which will
justified later.

The probability density function~PDF! of the proper ra-
dius is shown in Fig. 3, with the average of the radii bei
1.52 Å and standard deviation 0.261 Å. We found that
distribution has two peaks, one centered around 1.15 Å
the other around 1.60 Å. Also shown in the same figure is
smoothed result of the raw discrete data.

By setting a threshold radiusr * 51.27 Å at the local
minimum between the two peaks in Fig. 3, we can define t
states, which we call the closed and the open states.
physical meaning of the two states is whether, for that c
formation, the gorge of AChE allows a spherical ligand
radius 1.27 Å to enter. We then define a dichotomous sig
using the following coarse grain transformation function:

I ~r !5H 0 ~closed state!, r<r * ;

1 ~open state!, r .r * .
~1!

We can then calculate the dwell times of each state from
dichotomous signal.

The average radii of the closed and open states are^r C&
51.133 Å and^r O&51.621 Å. The mean values of th
closed- and open-state dwell times are^TC&52.86 ps and

s

FIG. 3. Probability density function of the gorge proper radi
~0.7 ns to 10.8 ns!.
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^TO&511.55 ps. The ratio of the sum of all the dwell tim
for the closed state over that for the open state is 1:4. M
mum open and closed dwell times for the gorge are 806
56 ps, respectively.

The dwell times are significant: they can be seen as h
long the protein stays in a state before passing on to o
states. The statistics of these dwell times give the relaxa
~transition probability! function, which is an important func
tion for dynamics.

The definition of the tail of the cumulative probabilit
distribution for a PDFf (t) is

P~ t !5E
t

`

f ~ t8!dt8512F~ t !, ~2!

whereF(t) is the cumulative probability distribution func
tion as usually defined. Figure 4 is the log-log plot of the t
of the cumulative probability distribution versus dwell tim
The data fall very nicely around a straight line over seve
orders of magnitude in the time axis; this suggests power-
functionsP(t);t2m and f (t);t2(m11).

In addition to the relaxation function, other commo
methods for the investigation of nonexponential dynam
include the time correlation function, the power spectru
and the dynamic scaling exponent for fractional rand
walk. Figure 5 is the time autocorrelation function of th
proper radius time series, showing an interesting nonex
nential decay behavior, which initiated our quest for the d
namic nature of the fluctuation. Figure 6 is the log-log plot
the power spectrum of the proper radius time series; equ
lently, this is the norm of the Fourier transform of the tim
seriesr (t), S( f )5uŝ( f )u2; f 2b. Again, it shows a genera
power-law decay trend. It appears to be a scaling noise,

FIG. 4. Log-log plot of the tail of the cumulative probabilit
distribution versus dwell time, showing the power-log behav
over three orders of magnitude. Note for ‘‘back door,’’ since we d
not have enough data for statistics of the open dwell time, only
closed ‘‘back door’’ data are shown.
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called ‘‘1/f ’’ noise @10#. It starts to level off as white noise a
about 1011Hz, due to the limit of our sampling frequency.

Figure 7 shows the calculation of the dynamic scali
exponentsz, defined by

D~ t ![A^@y~ t1t0!2y~ t0!#2&2^y~ t1t0!2y~ t0!&2;tz,
~3!

wherey(t)5( i ,tr ( i ). If z5 1
2 , it could be a trivial case of a

Brownian motion. Otherwise,z. 1
2 gives a fractional persis

tent random walk, andz, 1
2 antipersistent@11#. In this cal-

culation,z is about 0.89, which is much more persistent th
white noise. Dynamic exponents for the random walk a
also used to track other systems such as DNA-encoded w

r

e

FIG. 5. Time autocorrelation function of the proper radius tim
series. The error bar is a rough estimation based on the assum
that each of the 500 ps blocks of data is independent. The pres
of nonexponential decay makes the estimation of the error bar
ficult.

FIG. 6. Power spectrum of the proper radius time series.
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this method was reported@12# to offer better results than
autocorrelation or power spectrum methods, as is show
our case.

Apart from the statistics of the proper radius alone,
also studied the cross correlation between the gorge pr
radius and the potential energy of AChE~Fig. 8!. One can
easily see that the states in the first 0.7 ns are distin
different from those afterwards. The first and second hal
the trajectory after 0.7 ns are statistically similar. For the fi
700 ps, the system starts from a high-energy state wit
narrow gorge, and subsequently the system evolves with
to a relaxed equilibrium, namely a lower-energy state w
more time in the open gate state. This justifies our choice
the beginning of the equilibrium statistics. In order to s
whether there is an energy barrier at the threshold betw
the two peaks, we averaged the potential energy for e
value of the proper radius and plotted it for all values of t

FIG. 7. Dynamic scaling exponent shown as the slope of
log-log plot of Eq. ~3!. The slope from the linear regression
0.92360.007; the correlation coefficient is 0.99977.

FIG. 8. Proper radius vs potential energy plot. Each dot rep
sents a snapshot. The dashed line shows the transition from
snapshot to the next.
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proper radius~data not shown!. This resulted in a very rough
energy landscape, making it difficult to describe conc
sively.

IV. DISCUSSION

Since fractals appear in many different complex syste
many theoretical models have been developed to exp
them. Some are used to explain the dynamic fractals in b
physics, for example the amorphous two-level system~TLS!,
the time-dependent kinetics model, and the defect-diffus
model. For a brief review of models describing the frac
dynamics of protein, see Chaps. 6 and 7 of@2#. Though many
of them give the final power-law function, some are easie
understand physically.

The hierarchical model@13#, as a possible description o
protein dynamics@14#, is especially interesting in this case.
was originally proposed in the spin-glass literature to mo
different kinds of nonexponential dynamics problems,
example stretched exponential dynamics and power-law
namics. In this model, the complex relaxation event
thought of as a hierarchy of simple Markov relaxations. T
hierarchy of relaxations is divided into tiers. In each tier, t
relaxations are considered to be parallel and uncorrela
However, relaxations in the slower tiers can only happ
when the faster tiers have moved into required conform
tions.

In the case of a polymer, the fast degrees of freedom m
involve simpler motions with only a few atoms participatin
while the slower ones involve a group of atoms, maybe
subdomain. Indeed, most of the bond rotations in a polym
are constrained by simple energy barriers~comparable to a
single spin in a strongly coupled glassy material!. These
simple rotations have to reach a specific conformation
order to lower the barrier for the next tier of events to ha
pen, and so on.

We can express the relaxation function as

f ~ t !5(
i 51

N

~ci /t i !exp~2t/t i !, ~4!

with ( i 51
N ci51 as the requirement of normalization. Thu

for a simple~single-component! event, the decay is exponen
tial. Since the PDF of the dwell times is a Le´vy-type distri-
bution, which has a power-law decay tail, our objective is
find a set ofci and t i which can lead tof (t);A(t)/t11m,
where A(t) can be a correction from the pure power-la
behavior. Much effort has been spent in modeling this, e
in @15–17#. From both maximum-likelihood fitting of experi
mental data@18# and theoretical work, a likely solution fo
the equation above is the Weierstrass spectrum in geom
progression@13,16,19#, which defines two ratios:

ci 11 /ci5a and t i 11 /t i5l, ~5!

whereaP(0,1) andl.1.
With the help of the Poisson summation formula@20#, the

solution of Eqs.~4! and ~5! can be rewritten~see the RG
approach in@19#! as f (t)5BN(t)/t11m, with

e

-
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BN~ t !5
ctm

ln l H I N~m11,j!12 (
m51

`

i I N~hm ,j!i

3cos@argI N~hm ,j!1bm ln j#J , ~6!

wherec5(12a)/(12aN), t5t1 , m52 ln a/ln l, j5t/t,
bm5(2pm)/ ln l, andhm511m2 ibm . Here the integral is
defined as

I N~hm ,j![E
jl2N11

j

ynm21e2y dy. ~7!

In the case ofN→`, this approaches the complex-value
incompleteG function,g(hm ,j), and for longer timet@t, it
asymptotically approaches the completeG function G(hm).

One of the merits of this model compared with others
that it gives not only the dominant power-law trend, but a
higher-order oscillations around the trend. As mentioned
fore, this oscillation corresponds to the complex exponent
the complex fractal dimension. It has been observed@19,21#
in systems with abundant experimental data as well as in
simulation results. A few examples in biophysics include
human bronchial tree@22#, ion channel kinetics@18,23#, and
the tritium exchange in rhodopsin and lysozyme@21#. Earlier
phenomenological models successfully fit those data to
function w(t)5@A21A3 cos(A4 ln t)#/tA1 @Eq. ~4! of @21##.
From Eq.~6!, we can see that besides the zeroth order w
power-law trend, we have a series of cosine functions
decreasing magnitude with increasing order. The oscilla
can help us to estimate the parameters of the model. Be
we estimate the parameters, we should point out that in
above section, we plot the tail integration of that PDF
stead. Fortunately, with simple substitution, one can pr
io

ne

n

tl.
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@19# that the integration of the above equation nicely p
serves the type of function only with different paramete
(m11→m,b i→b i). Here we use data from the gorge op
case as an example to evaluate parametersa andl for this
model. Based on the discussion above and Fig. 4, we can
that for an order of magnitude of change, about five-hal
of oscillations occur, therefore the parameterb152p/ ln l

'p/( 1
5), so lnl'2

5 and l'1.5. Since the slopem5

2 ln a/ln l'0.85, we estimatea'0.7 for this case.

V. CONCLUDING REMARKS

We reported striking fractal dynamics of a protein mo
ecule from a MD simulation. Several statistical analysis to
were applied to demonstrate this behavior, and a mathem
cal model was highlighted in an attempt to describe the s
tem. We want to point out that some of the statistical me
ods and theoretical models are inspired by and borrow
from the well-studied fractal ion-channel kinetics. This is
example of fractal application, which often connects two s
tems seemingly without similarity. Here, a similar kind
molecular level gating motion might be a candidate for t
underlying phenomena in the ion-channel case, which w
also suggested by recent experimental results@24#.
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